/100 37 N95- 16454

SOFTWARE ENGINEERING FROM A LANGLEY PERSPECTIVE
by Susan Voigt :

This presentation is intended to provide a brief introduction to software engineering to set
the stage for the panel discussion and some of the workshop presentations.

The talk is organized into four sections, beginning with the question "What is Software
Engineering?" followed by a brief history of the progression of software engineering at
LaRC in the context of an expanding computing environment. Several basic concepts and
terms are introduced, including software development life cycles and maturity Jevels.
Finally, some comments are offered on what software engineering means for LaRC and
where to find more information.

In an article in the ACM Computing Surveys in 1978 (Vol. 10, No. 2, p. 197), Marvin
Zelkowitz defined software engineering as the "process of creating software systems."
(Note: ACM is the Association for Computing Machinery.) The IEEE Standard 610.12-
1990 (Standard Glossary of Software Engineering Terminology) has a widely accepted
definition that effectively is the application of an engineering approach to software.

The term "software engineering” was used at NATO conferences in 1968 and 1969, but
became commonplace in 1975 when the first national conference (which became
international at the second) was held in Washington, D.C. In that same year, the IEEE
began publishing the journal: IEEE Transactions on Software Engineering. NASA started
funding software engineering research as part of the Computer Science Research Program
in the Office of Aeronautics and Space Technology in 1983. The Department of Defense
was also concerned with "the software problem"” in this time frame, and in 1984 the
Software Engineering Institute was established at the Carnegie Mellon University.

NASA's Office of Safety and Mission Assurance (Code Q) established the NASA Software
Engineering Program in 1991, with funding for and active participation from LaRC.

Just as software engineering was developing, our computing environment was becoming
more dispersed. In the 1960s, computing was done by computing professionals in a
“closed shop" environment. However, by the 1970s, FORTRAN was used by researchers
across the Center, and they had access to the centrally located computer facility by using the
"green tub" service for pick up and delivery of punched cards and printed output (also
called computer listings). In the mid-1970s, microprocessors and time sharing came to
LaRC, providing remote computing capability. Computing expanded in the 1980s with
distributed systems, personal computers, and data acquisition and/or control systems in
many facilities. The 1990s has brought even more powerful workstations and networked
systems. This changing environment has decentralized the computing and software
development at the Center, so that software is now created in many organizations, with
little coordination or collaboration.

One of the fundamental concepts in software en gineering is that of life cycle. The life cycle
is a way to capture the schedule and discipline of key activities, reviews (such as system
design, requirements review and design review), and deliverable items at specific points in
time. The Department of Defense has identified three "program strategies" in their recent
standards, that illustrate classic software life cycles: waterfall, incremental and spiral.

The Grand Design strategy assumes a complete definition of the requirements prior to
design. The waterfall life cycle includes the development phases: requirements analysis,
design, coding, test and integration and finally operations and maintenance. As each phase
is completed, products are delivered that support the next phase.

21

The Incremental strategy is also called "preplanned product improvement.". The user
needs and system requirements are defined followed by a phased development with several
releases or system builds. Each phase includes the typical steps in the waterfall process.
Experience with early releases in the incremental approach can provide refinements for
subsequent releases, along with the new capabilities planned.

The Evolutionary strategy is based upon Barry Boehm's spiral model (described in ACM
Software Engineering Notes, Vol. 11, No. 4, Aug. 1986, pp. 14-24; and IEEE Computer,
May 1988, pp. 61-72). This approach encourages consideration of risks, constraints and
alternatives. The software development occurs in the third quadrant of the spiral, and is
similar to the incremental development.

The Software Productivity Consortium (Lockheed, one of our support service contractors,
is a member company) has extended the spiral model into the Evolutionary Spiral Process
(ESP) Model with extensive training and guidebook materials available to SPC members
(and to NASA, as a Lockheed customer). : i

The Software Engineering Institute (SEI) has defined the Capability Maturity Model
(CMM) that can be used to identify how an organization can improve the maturity of its
software process. The CMM has five levels, from initial to optimizing. Watts Humphrey,
SEI fellow, is considered the author of the CMM. We do have copies of SEI provided
documentation on the CMM in the Space Systems and Concepts Division. The lowest level
(1) is when software development is informal and each job is only as good as the individual
software developer. This is the stage when good software results from heroic effort.

Level 2, called "repeatable,” is more intuitive, where there are some common practices, but
problems invariably arise when something new is introduced into the process. The focus at
level 2 is on project management. The "defined level" (3) is qualitative and focused on the
engineering process. The process has been written down, and the organization has
accepted it as common practice. Training in the process is available, providing continuity
with personnel turnover, and the staff meets regularly to discuss improvements. The
quantitative or "managed level” (4) has measures in place to track productivity. The focus
is on both product and process quality. The process is understood and managed so that
bottlenecks can be identified and automated tools can implement parts of the process to
reduce human error. When an organization has achieved the "optimizing level" (5),
detailed metrics on the process are collected, problems can be anticipated, there is constant
process improvement, and new technology can be infused. A level 5 organization is
practicing TQM in software development to the full extent. At the present time, most
organizations are at level 1 or 2.

The SPA and SCE are two assessment methods defined by the SEI. SPA, the Software
Process Assessment, is used by an organization to assess their own actual process maturity
and develop a software process improvement strategy. It is only for internal use. SCE, the
Software Capability Evaluation, is more like an audit. It is used to gather information on
the software process maturity of organizations that might be competing for a software task.
Several government agencies are using SCE's in their source selection process. Our
panelist from the Naval Surface Warfare Center has been trained in the SCE, and she will
share some insights on this later. An analogy to compare the SPA and SCE: An
assessment is like having a friend or relative help you prepare your income taxes (it's
internal), whereas an evaluation is like having the IRS do an audit of your taxes.

Some other basic concepts of software en gineering can be introduced by definin g some
jargon. CASE (computer aided software engineering) is a generic term to describe tools
and environments that provide automated support for software development. The DOD has
used CSCI (computer software configuration item) to describe major software modules

22

(that are kept under configuration control). Submodules are called Computer Software
Components (CSC) and often compilation units are called Computer Software Units
(CSU). CM stands for configuration management, a process for identifying and for
controlling release and change of software items. Object Oriented Design (OOD) and object
oriented programming are an alternative approach to procedural-oriented software
architecture, treating programs and data as objects. IV&YV is Independent Verification and
Validation, the testing of software functionality and validation against requirements
performed by a team separate from the developers. Software Quality Assurance (SQA) is
an activity performed throughout the life cycle to assure that requirements analysis, design,
code, and the resulting product satisfy the software requirements.

Additional jargon includes SMAP, which was the Software Management and Assurance
Program led by the NASA Office of the Chief Engineer and later the Office of Safety,
Reliability, Maintainability, and Quality Assurance (Code Q) in the 1980s. The SMAP
team included representatives from all NASA Centers, and they helped define the NASA
software documentation standards that have evolved to NASA STD-2100-91. The SMAP
has been replaced with the Software En gineering Program in the current Code Q, Office of
Safety and Mission Assurance. DID stands for Data Item Description, the Department of
Defense (DOD) term used for software documentation format, instructions and outline.
For example, the DOD-STD-2167A describing the current Defensé System Software
Development standard, contains at least 16 DIDs. The DOD program Software Technology
for Adaptable, Reliable Systems, called STARS, has been active for over 10 years, and is
the focus of considerable effort in areas includin g Software Engineering Environment
(SEE) and Software Reuse. Research into reusing software assets (e.g., design and code
-segments) has included identification of domains or classes of application areas with
common aspects where reuse makes sense.

Since the daily work at LaRC relies on software more and more, and as more emphasis is
placed on the transfer of technology (which includes our software products), there is a need
to pay more attention to the engineering of our software. There are several resources
available to people at the Center, includin g the Software Engineering and/or Ada
Laboratory (SEAL) in the Information Systems Division, an Inter-Group N-Team on
Software Productivity, Quality, and Reliability led by Robert Estes, and Internet access to
many information resources. The recently formed Ham pton Roads Software Process
Improvement Network (HRSPIN) offers additional opportunity for professional
development and information exchange with individuals from government, industry and
academia interested in software improvement. The Technical Library (as well as many
individuals) have several of the software Journals of particular value to the software
engineering specialist.

There are several standards that also are applicable, and these can prove useful in guiding a
software process. Experienced software engineers at NASA Langley are willin g to share
their knowledge, and the SPQR N-Team provides them an opportunity to network and
work together to improve the quality of software at the Center,

Software engineering techniques can im prove the software products developed for and by
LaRC. The panel represents several perspectives on software development, and these
experienced software developers and managers are willing share some of their views on
where we are and where we should be going.

23

¥661 ‘GL aunp

dousmoM a=gy oye ui smmdwoo JO 9J0Y ayL
0} pajuasaid

DdSVS ‘Uoisialg sidasuon pue swia)sAg aoedg
16I0A *r uesng

Aq

ONIH3IANIONI IHVML40S

- 24

14

Outline

What is Software Engineering?
A Brief History from LaRC Perspective
Introduction to SOme Basic Con(:epts

What does this mean for LaRC?

9T

What Is Software Engineering?

- "Process of creating software systems"
(Zelkowitz, 1978 Computing Surveys)

"The application of systematic, disciplined,
quantifiable approach to the development,
operation, and maintenance of software"
(i.e., the application of engineering approach
to software)

1EEE Std 610.12-1990

"meﬁojd Buu*éafu'gﬁ'ug ajemnos palels D 8poO YSYN L66L *

aoa Aq paysiiqels3 einisuj BupieeulBuT SIEMPOS/AIND vg61L -

(tusuodwod Bunisauibug atemyog yum)
papunj weibold yoleasay aouaiog seindwo) ySyN €861 *

paluels jeuinol Bupissuibug 21em}jos uo suoloesuel] J33|

5uueau!6u3fa‘JeMuos uo aoua:a;uo:) (1.aup) Jeuonen 1s114 G/6L *
anboa ul Bujwwesboid paimonang €/61L ¢

S90UaIajuU0y OLVN e pasn ,buuaauibusy aiemyos, 69/8961

aAloadsIad Dye - AIolsIH jaug vy

27

SWwalsAs [enuiiA ‘suonelsyiom pa)Iomia - S066L

san|1oe}
pajewolne pue ‘sod ‘swaisAs pajnquisiq - SOg6L

R ‘sqeT ul siossasoudoloipy
Aupoe [enuad uy Buleys swiy - sgz-pipy

(doys uadQ) asintes qng TEET])
Slayalessal Aq pasn NYHI1HOH - S0/61

) (doys paso|))
adv ut auop buiwwesbo.d ‘sgz Ajiea B S0961 Uj

ode1 1y bunndwo) 0 ssaiboiy

28

SS920.d IEJ!dS AHVNOILNTOAZ -

Jjuswdojanaq paseyd pauuejda.id TV.LNIWIHONI

lIeM91ep, NOIS3A ANVYHD -

s9|qelanl|aq pue ‘smajrdy A8y ‘SalliAloYy JO 9|npayos

S9JoA) 9)17 aiem)yos

29

m

CRITCITE T

, W
® suonesado

uoneibajuj

KR TR w

9p0) u

ubisaq w

sisAjeuy
sjuawaiinbay

)

[ieJ191e M\

30

[£%

Incremental

R/D/C/ T

V Release 1

Rﬁ/ﬁ/c':/T V Rel.2

R - Requirements
D - Design

C - Code

T - Test & Integ.

R/D/C/T

V Rel.3

43

H e T . .

Boehm's Splral Lifecycle Model

1. Determine objectives,
alternatives, constraints

7N

Progress through

oV

steps

2. ldentify, resolve risks
Evaluate alternatives

4. Plan next phases

3. Develop, verify
next-level product

%3

SPC

Software Process Models

Software Productivity Consortium

ESP

SEI

(Lockheed is a member company)

Evolutionary Spiral Process Model

Software Engineering Institute

CMM
SPA
SCE

at Carnegie Mellon University
Capability Maturity Model
Software Process Assessment

Software Capability Evaluations

ve

FIVE MATURITY LEVELS

Optimizing
i (5)

U Ma?z)ged Quantitative
De{;r)led Qualitative
Repeatable Intuitive
(2 |

Informal

S€

Capability Maturity Model

Level Focus Key Process Areas Result
Continuous process | Defect prevention
S improvement Technology innovation : o
Optimizing Process change management Productivity
Product and process | Process measurement and & Quality
4 quality analysis
Managed Quality management
N Organization process focus
3 Engineering process Organization process defn.
) Peer reviews
Defined Training program
Intergroup coordination
Software product engineering
Integrated software mgt.
Project management | Software project planning
2 Software project tracking
Repeatable Software subcontract mgt.
Software quality assurance
Software configuration magt.
Requirements mgt.
1 Heroes
Initial

Software Engineering institute
p—— Carnegie Melion University

-)

"'ONIAOO LHVLS NOA
40 1S3H FHL ANY G33N AFHL
LVHM LNO aNI4 ANV dn 0o T1.1

UOHBZIUEBS.I() [9A] [BIIUT UR JO SONISLIDJIR.IRY)

36

saxe)
INOA JO lipne ue op SH| ayl buiaey ayjl| st uonenjeag uy @

saxe)] awooul JnoA asedaad noA
djoy o1 mej-ul-1ayjo.aq 1nok bupse a8l SI JUBWISSOSSY uy @

A3oeuy uy

37

8¢

Some Software Engineering Jargon

- CASE Computer Aided Software Engineering

« CSCI/CSC/CSU Computer Software Configuration
Item/Component/Unit

« CM Configuration Management
« OOD Object Oriented Design
¢ V&V Independent Verification and Validation

* QA or SQA Software Quality Assurance

6¢€

More Software Engineering Jargon

- SMAP NASA Software Management and
Assurance Program (1980s)

« DID Data Item Description (Document Format)

- STARS DoD Software Technology for Adaptable,
Reliable Systems Program (1984 - present)

« SEE Software Engineering Environment

- Software Reuse Incorporation of previously
developed software products

« Domain Category or Application Area

What Does This Mean For LaRC?

» Increasing reliance on Software in Daily Work
- Technology Transfer Focus => Software Releases

- Several Activities and Resources are available

oy

- ISD/SEAL (Software Engineering & Ada Lab)
- SPQR N-Team
- Mosaic/WWW Information

- HRSPIN (Hampton Roads Software Process Improvement
Network) . | | =

- Journals (IEEE Software, IEEE Trans on SE, ACM SIGSOFT, ...)

[44

Standards can be Resources

« NASA-STD-2100 Software Documentation Standard

+ 1ISO 9001 Quality System Standard
A NASA Standard

« 1ISO 9000-3 Software Quality Guidelines

« DOD-STD-2167A Defehse System Software Dev

» MIL-STD-498 Software Development and Doc
« MIL-STD-499B Systems Engineering

« many IEEE Standards

i wea]-N Aupqeloy
pue ‘Ajijenp ‘Ananonpoud atemyos oye ays ujop

Jodeayo ‘Jajaq ‘ia)sey,, jo yuids |
oy ul Ayjenb asemyos ino anosdwi o) paau ap\

U | - 0H"eT
1e)lom op siasulbu3 asemyos paouaiiadxy

- sjonpoud asemyos
19)18q 10} Alessaoau si Bunisauibug alemljos

AHVINANS

42

Summary of Panel on Perspectives on Software Development

The panel consisted of five NASA Langley employees representing different
application domains and a representative from the Naval Surface Warfare Center
in Virginia Beach, VA. Each panelist began with a short statement reflecting both
experiences and perspectives on software development. The panelists, their
application domain area, and organization were:

Chuck Niles Facilities Software, 10G

Pat Schuler Flight Software, I0G

Tom Zang Researcher Software, RTG and LCUC Chair
Pam Rinsland Embedded Systems Software, IOG

Peg Snyder Science Software, SASPG (retired)

Brenda Zettervall = Software Quality Improvement,
Naval Surface Warfare Center
Susan Voigt Moderator, SASPG

Chuck Niles is in the Electrical and Electronic Systems Branch in the Facilities
Systems Engineering Division of the Internal Operations Group. He has 15 years
of experience in software development for wind tunnel control systems, process
monitoring, and ground facilities communications on minicomputers and the
whole family of Intel microprocessors. He is responsible for software
configuration management for many wind tunnels at LaRC and has developed
documentation for all phases of software development. His opening remarks,
"Perspectives on Software Development," are included following this section.

Pat Schuler is in the Advanced Computer Systems Branch in the Information
Systems Division of the Internal Operations Group. She began her Langley
career providing support for scientific research computer applications. She was
software manager for the first embedded systems (flight software) project in the
Software Engineering and Ada Laboratory (SEAL). Since the SEAL was formed,
she has been active in developing it as a center of excellence in software
engineering at LaRC, with support from the NASA Office of Safety and Mission
Assurance (Code Q). In this discussion, Pat represented the flight software for
Langley scientific instruments.

Pat cited three characteristics of flight software development: embedded systems,
distributed processing, and real-time. She went on to clarify these as follows:

Embedded systems - A specialized computer with custom-programmed
software used to control functions within the device it's controlling.

Distributed processing - A system in which tasks to be performed by the

available computing resources are executed by a number of processors,
often in parallel.

43

Real-time - Results are calculated in sufficient time to guide the physical
process under control.

She cited four typical examples of space flight projects at LaRC: CERES, JADE,
LITE, and MIDAS with flight life-times ranging from 11 days to a few months to 5
years, and flight code size ranging from 2K to 18K (where K represents 1000
source lines of code). In addition to on-board flight software, ground support
software, including simulators, test subsystems and mission operations
subsystems must be developed, and these range from 2 to 10 times the size of the
flight code. The SEAL has standardized on Microsoft Windows and other MS
software, Ada, object-oriented design, formal inspections, and Novell as their
local area network for internal mail and a shared group calendar. The SEAL tools,
based on PC and Intel, are considered a Center resource. The SEAL is also trying
to baseline their software development process and document it in guidebooks.
They also are collecting metrics on how software is developed in the SEAL. SEAL
personnel provide consultation to and arrange training for other groups at the
Center in software engineering processes and tools, but they do have a limited
staff. A list of the tools and software documents available from SEAL follows this
section. Anyone interested in learning about the tools, their use, and related
training should contact her.

Tom Zang is head of the Multidisciplinary Design Optimization Branch in the
Fluid Mechanics and Acoustics Division of the Research and Technology Group.
He also is the chair of the Langley Computer Users Committee (LCUC). He
represented researcher software on the panel.

Tom said that the LCUC intends to reorganize itself in the fall to align with the
new Center organization. The LCUC was set up about 20 years ago to provide a
voice for user concerns and desires to the Analysis and Computation Division for
short-term tactical and some long-term strategic planning.

The two products from research are reports and software. However, managers
and researchers simply do not recognize the importance of their software as a
technical product. He observed that NASA encourages the quality aspects of
technical reports, but not of software. Four types of software products are
produced by researchers at LaRC: concepts, portable modules, pilot codes, and
production codes. The concepts may include new algorithms and these are
published in technical reports. Modules are usually available as commented
code. Pilots are prototype software for early release with caveats since it is not
thoroughly tested, still may be in development, and has little documentation.
Production codes are well written and well documented computer programs. A
good example of multidisciplinary code at LaRC is FIDO (described by Bob
Weston at a later session at the workshop). In closing Tom stated he would like
to see management place greater value on good software, researchers write their

44

software for others as well as themselves, and software engineers act as a resource
for others at LaRC. He did note that software engineering is included on the list
of necessary skills in the Research and Technology Group (RTG).

In these proceedings, he has included a few charts from the LCUC files of a 1980
briefing by Jarek Sobieski which cite some of the same issues. A copy of Tom's
transparencies "Perspectives on Software Development" are included following
this section.

Pam Rinsland is the assistant head of the Electronics Systems Branch in the
Aerospace Electronics Systems Division of the Internal Operations Group. In her
22 years at LaRC she experienced the transition from the batch-oriented central
computing and plotting without preview to the "instant gratification” of time-
sharing. She has developed software for a wide range of aerospace applications,
including writing code to execute on computers ranging from Intel's first 4-bit
processor to the first supercomputers delivered to LaRC. In her current position,
she is in a hardware-oriented branch and promotes her firm beliefs in the
absolute necessity of close ties between hardware and software specialists, and in
maintaining discipline in the software development process.

Her opening remarks, Reflections from a "Jurassic Programmer” on Software
Development at LaRC, follow this section.

Peg Snyder, prior to her retirement from NASA in May 1994. was in the Data
Management Office in the Atmospheric Sciences Division of the Space and
Atmospheric Sciences Program Group. She has 31 years of experience in
software development at NASA, starting at Lewis Research Center with
FORTRAN code on a mainframe with 30K of 36-bit words (memory) for basic
research in nuclear physics scattering analysis and non-steady fluid flow. An
early lesson she learned was to number your punched cards (artifacts now found
in the museums in Washington, DC). She worked for several years in the Space
Station Freedom Program Office prior to coming to LaRC 3 years ago. Her
software experience ranges from office automation software and space
applications to wind tunnel applications, data reduction, and CERES data
processing.

Peg's most important message to the audience was that best results are obtained
when an engineering approach is applied in the development of software.
Specifically, her approach has six steps: 1) Define the problem (in the 1960s an
engineer would bring a notebook to the programmer with "requirements"
documented); 2) Figure out how to solve (reformulate the problem in terms of
mathematics and select appropriate numerical analysis techniques); 3) Design
the solution; 4) Implement the solution; 5) Test: 6) Use and maintain. We
actually practiced more software engineering back in the batch days than we do

45

now. A second important message was that automated tools are only useful if
they help you implement a process already in place. -

Brenda Zettervall is Quality Improvement Administrator for East Coast
Operations of the Port Hueneme Dijvision of the Naval Surface Warfare Center.
located at Dam Neck in Virginia Beach, Virginia. She has 18 years of experience
in software development including land-based integrated combat simulation .
programs and systems engineering necessary to translate operational
requirements into simulation performance requirements. She is a member of the
Software Engineering Institute (SEL} Capability Maturity Model (CMM) Advisory
‘Board and the CMM Based Appraisal Review Group. She also is qualified to
perform Software Capability Evaluations. She is the first chair of the recently -
formed Hampton Roads Software Process Improvement Network (HRSPIN).

Three years ago, Brenda became involved in quality improvement as part of a
competition between Naval support centers and between the Navy and AF for
software post-deployment support. Since the Navy is down-sizing and
decommissioning many ships, software process improvement was necessary for
survival since most of the systems supported at Dam Neck were on the "hit list."
Being able to maintain cost and schedule is highly dependent on the maturity of
the process in place. Hence they have embarked on establishing a management
discipline for software development and maintenance. This means their process
is documented, trained and enforced. The Navy is challenged to survive and to
improve their software engineering process, since the Air Force has a vision to do
all software engineering for the Department of Defense.

Questions from the Audience and Panelist Answers:

Q) Other engineering disciplines are based ors mathematics. What is the basic
science on which software engineering is based? '

A) Mathematics is the basis for formal methods and algorithms such as rate
monotonic scheduling.

Q) Suppose your organization were in charge of developing software for the
next generation aircraft. Would you fly on it?

A) Four panelists said "Yes" and two said that flight critical software was outside

their domain, and their organizations did not have the appropriate expertise and
training.

46

Q) How will the software development process have changed 10 years from
now?

A1) We will be doing it at home.

A2) Researchers will write code from day one using good practices - even if it is
just "for themselves". ~

A3) We hope to raise our organization to higher maturity levels, hopefully close
to a CMM level 5 and the Center to level 3 or 4.

A4) Necessity is the mother of invention. In the 60's there were incentives to
make programs work smarter (e.g., you could be called in the middle of the night
about your wind tunnel software if it didn't work properly). Things are
changing, so we will be forced to be more rigorous.

AD) There will be a trend toward graphical programming models, and off-the-
shelf packages available for control systems. There will be "6th generation
programming languages". ' '

A6) We will be rewarding people for good software engineering practices
(activity will not be confused with productivity).

A7) Rapid prototyping and workstation platforms will be common.

Q) Where is a good place for Software Engineering at LaRC? In an N-team, a
Branch or a Group?

A1) Software people are throughout the Center and there is no central focus or
mechanism for software developers to exchange ideas and information except in
the N-team. In a closed shop (as in the 1960's) professionals sat closely together
and could share ideas and software. The Software Productivity, Quality and
Reliability (SPQR) N-team is a good place for professional sharing.

A2) The Information Systems Division has a business thrust in Software
Engineering and it is focused in the SEAL, the LaRC Center of Excellence in
software engineering encouraged and supported by the Code Q Software
Engineering Program. (The GSFC Software Engineering Laboratory just won the
first IEEE Software Process Award; JSC has a Software Technology Branch; JPL
has the SORCE).

A3) Perhaps the Center should form a local SPIN (software process
improvement network) or SEPG (software engineering process group) in
addition to the N-team.

Q) More than half of the software is being developed by people who are not
software professionals. Engineers, doctors, and lawyers often write their own
code. I can't find good textbooks written by professionals. Do you share that
view?

A1) Perhaps we can never get non-software professionals away from
programming. Would it help to have more training in software engineering?

47

A2) The Information Super-Highway may be more of a threat to a disciplined
approach than interactive programming! ‘
A3) The SEI apparently is now hiring mathematicians rather than computer
science graduates, going back to the basics. P

A4) I'would defend the engineer who writes his own code. We need better
practices in software development so the researcher can do the software work.
A5) Everyone needs to work more closely with the customer. The research
engineer and the programmer need to work closely together. :

A6) We need to have more fundamental training for "FORTRAN-type"
programmers (basic training for research and prototype software).
Unfortunately, the training office doesn't like to repeat classes, which makes it
difficult to offer basic classes to a wide audience. ‘

Q) Ibuild "Flight Systems" and there is electrical hardware that is not ‘
well-documented. Are we confusing software engineering with engineering as a
discipline? : :

A) There is a difference between scientific research (prototyping) and systematic
engineering (final product) software. Software engineering professionals should
be involved with the final product.

COMMENT) We need to distinguish between scientific research and
engineering development. Be careful not to compartmentalize or constrain
research. Idid the software development on one of my own mathematical
models - it helped me to understand the problem.

In closing, Moderator Susan Voigt proposed 5 domains for software classification:
flight software, facility software, ground support equipment software,
management information systems, and research software (see Attachment). Also
the intended use of software may affect its level of disciplined development: My
use only, use within my work group at LaRC, Informal release outside LaRC, Beta
release outside LaRC, and Formal release (e.g. COSMIC) outside LaRC.

Members of the audience were invited to comment on the domains and intended
use categories and to join the LaRC software N-team if they were interested.

48

Perspective on Software Development
Charles E. Niles

What types of software do you develop? The domain is ground facility automation
systems, specifically closed circuit and blowdown wind tunnels and
research labs. Applications include control algorithms for test environment
conditions (Mach number, Reynolds number, pressure, temperature),
model support systems and other test articles (pitch, roll, yaw, Alpha,
Beta), and high pressure air systems (pressure, temperature); process
monitoring; operator interfaces; and utility functions such as data logging
and sequence of events recording.. Hardware systems include 80486-
based microcontrollers, industrial PCS, PLCs, minicomputers, and
combinations of these. Supporting systems include commercial analog
and digital controllers, motion controllers, and servocontrollers.

Who are the users of this software ? Facility operators, in support of LaRC and
commercial aerospace researchers.

What is the life cycle (how long is the software used)? Indefinitely. Generally, the
software is replaced during a CoF upgrade to computer hardware and
control rooms. :

Is there much maintenance or enhancement required? Steady work - correcting
bugs and improving performance. . ‘ B

Maturity of Software Development - Software development, as we know it, has
been around for 40-50 years. Software engineering, has been around since the
early 1980’s. Considering that other engineering disciplines have existed for
1900 years or so, the software world has come a long way. Understand though,
that software engineering is still in its infancy. The point is that other engineering
disciplines are not exact sciences and neither is software engineering. Only the
laws of physics and the mathematics upon which they are based are.

Software Development Relative to Operating Systems - In recent years, more
popular languages, notably C and C++, have advanced the portability of
applications from mainframes, to minicomputers, to PCs, Macs, and
workstations. Witness that different operating system platforms are capable of
running the same application. However, the class of applications is generally
confined to office automation tools. | believe that application software developers
should be able to develop an application with no concern for the operating
system it will run on. Of course, we have no universal operating system today
and probably never will. But, the proliferation of operating systems and
programming languages demands a consistent application programming
interface. Currently, we have at least as many APIs as there are operating
systems and hardware platforms to run them on. Perhaps, a universal API will
emerge as the POSIX standards are developed. :

49

Software Reusability - DoD mandated the use of Ada to promote reusability of
source code, among other things. C++ was developed to foster the development
of reusable class libraries and methods. Neither has accomplished this goal,
and never will. Problem - reusability is more trouble than it is worth. How
many of you have ever written a five-to-ten line routine to do something because
there was not a library call to do it or because you could not afford the time to
locate one ? ... How many of you have ever obtained source code that seemed to
meet your needs but would not compile initially or did not execute as you
expected ?... Individuals and small teams will usually reuse source code they
have written themselves because they know where to find it and they know how it
works - and it does not matter the language in which it is written - they will
convert it, if necessary. But seldom will you go to another organization to find
code that you need. Can you imagine Microsoft and Botland sharing source
code ? Forgetit. There are instances where commercial developers license
software packages from other developers - it is less expensive than litigation.
Problem - new or unique software does not already exist. An entirely new
application can be based on a existing components (system calls, intrinsic
functions, internally reused segments, etc), but they must be blended into a new
overall package. Blending it all together to create a new application is still ime-
consuming, even if 50% of it is built from existing components... in my opinion,
widespread software reuse will not happen on a nationwide basis and definitely
not on an industry-wide basis. It is unlikely to be harnessed on a domain basis.

What is wrong with software developed at LaRC? What should we do about it?
1. Funding is always inadequate because of the politics involved in selling a
facility modification project. The the higher the cost of a project, the less likely
that it will be approved by HQ. When it is approved, the budget has been
decreased too much to accomplish the overall job, let alone the software part.
So, ultimately, we must complete the project in-house. The transition time for a
50,000-line job is not instantaneous. When we do a job in-house from its
inception, the product is better, but the project takes longer because only minimal
resources can be applied. The solution begins with properly planning a job and
estimating the cost, including risk factors, and selling it for what it will cost, not for
what management believes HQ will approve it. - SHLARE S

2. Documentation is generally poor - it is usually outdated and incomplete. Face
it, programmers like to write code, not documents. Programmers are extremely
optimistic estimators. When they have used their allocated time getting their
code to run, they do not have enough time to document anyway.

3. Management/customers do not understand the true costs of software. Most
managers believe that software is something that comes on a set of disks or CD-
ROM, costs $500, and has a life of 6-12 months, depending on when the latest
revision is released. Management fails to recognize that the developer probably
spent $1 million and 20 person-years to develop the initial release and must sell
200,000 copies to break even. Facilities automation personnel and/or contractor
personnel, by comparison, have performed miracles with $200,000 and 4 person-
years. Unfortunately, our products have been overshadowed by late delivery and
hardware reliability problems.

50

How can software improvements be institutionalized at LaRC?

1. Define standards and the criteria for their applicability.

2. Train and equip developers better.

3. Apply newer, industry-proven techniques.

Aside: Software has improved. Consider that the applications we develop today
are significantly larger and more complex than their predecessors. | suspect that
most of us could rewrite some piece of software we developed a few years ago in
less time and far more robustly. So, what was it that really improved ?

What data should be collected on software developed at LaRC and how should
this data be used? ;

1. Description of the software - function, size, platform, language(s), etc.

2. Resources applied - personnel, cost, tools :

3. Why it was developed - benefits

4. Techniques - requirements analysis, design, coding, testing:

5. Lessons learned e ,
Information of this type could serve two purposes. First, a project team could use
it for guidance. Secondly, after some period of time, a committee could evaluate
this database to establish recommended practices, identify common attributes
across different domains, identify common problems and how to avoid them,
develop cost/resource criteria for future software projects, etc.

How can we encourage problem (defect) reporting & collection at LaRC?

There are two distinct categories: pre-release and post-release. Pre-release is
the responsibility of the person(s) testing the software. Since the programmer
usually performs intial testing, any data is virtually meaningless. Post-release is
the responsibility of the users. | have found that encouragement is generally not
an issue in this case. Problems having potential safety impact - a portion of
which are software related - are reported when a subsystem fails. Under the
facilities Configuration Management program, the Facility Safety Head is
responsible for reporting such problems. Problems are generally reported when
a certain function of the software becomes important to a test. Generally, there is
no mechanism to report problems specifically with software at LaRC.

What suggestions would you make for how we should be developing software at
LaRC in the future? | believe an individual representing each software domain
(i.e. Blue team) should visit the SEl or a major commercial developer, spend a
few days observing, return, draft a software development handbook, obtain
feedback from a different set of individuals representing each software domain
(i.e. Red team), revise the handbook, publish it, and encourage management to
enforce it.

51

32 ‘GLaunp
ao:@:og oLS9

0._.m .._ocm._m OdWN ‘PesH

-0N91 dieyn
bBuez 'y sewoyy

juawdojanag
91eM}OS U0 saAlldads.lad

52

€S

Langley Computer Users
Committee

* Membership: research & support staff

* Role: a grass roots users organization that
provides

— tactical recommendations (solicited & unsolicited) to
providers on computing issues

— provides forums for information exchange between users
on a variety of computing topics |

e Audience:
— providers (ISD)
- computer users

e Will be reorganized in late Summer

vs

Langley Computer Users Committee
Existing Structure

Langley Computer Users Committee
Membership--One per Division
& Contractor Members

S A e

Strategic . _ ,
Accounting Artificial . \
Computer ' l . CAD/CAM . , l Graphics Networking [
[Re quirements & Security] [] tntellngence V]

Data .

. Office

[Acquisition [Automation]

Systems , T

Super-
computing
Systems

Training &
Document-
atio

R,

Distributed NOS | Real-Time

Systems

Simulation

uolleziuebio OA DY

55

Ansnpu; ‘9dsvys ‘Odvy
‘O J.H 01 salﬁompomaw OdIN mau Jaysuesj

1Y ay} 1noq5nmq1 salllAljoe
Meundmsrpmnw JO yimoub ayy 181s04

salpnis uonealjdde g ui ajedioned

Odai
Jo ABojopoyiawi ay) ojui ysieasal uLoIad

suonoun4 youeig Oamn

56

LS

NASA Products

Concepts

— NASA disseminates the concepts underlying new algorithms , physical
models and/or computer implementations

— these concepts are incorporated into customer’s own computer codes
Portable Modules | |

— these modules are incorporated into customer’s existing codes to add or
improve capabilities

Pilot Codes

— early release of a research code that is typically special purpose, requires
an expert user and is not fully debugged PI P

— customer uses full code or else extracts modules of interest
Production Codes A |

— robust, efficient, user-friendly, validated, supported

— customer uses full code or else extracts modules of interest

0861 ‘Pisalqos

(0861 ‘ONo1 01 pajuasaid)

0861 ‘Yydtepy ‘doysyiopm
ABojouyoa] atemypog YSVN 410} pasodoid

S81q0S me|so.ep
Aq

swelboid Jendwon padojanaq
"VSVN 8Aroudwi 0} MoH :jesodoud v

58

6S

Problem

* A large number of computer programs are
generated in NASA research work as
prototype, proof-of-the-concept programs,
typically as companion items to NASA formal
reports | -

* These programs are, typically, researcher-
generated and frequently embody new
important methodologies and soiutions

* Problem is that too often these programs are
unreliable and/or inefficient, especially in
hands of users other than developers

Sobieski, 1980

09

Evidence

A particular group of NASA and contractor engineers (total of
14) have been working for the past 6 years at NASA LRC with
an integrated system of programs applied ir: aircraft
aerodynamics, aeroelasticity and structures problems

The system involves now 43 programs ranging in size from
500 to 30,000 Fortran lines, a statistically significant sample
Majority of these programs came from NASA research work,
in-house and grant o | -

Nearly all of these programs did not work as claimed when
they were first obtained, significant time and effort were

needed to make them work and to make them operate with a
minimum of acceptable efficiency |

In contrast, most of the contractor generated programs were
free of the serious reliability and efficiency problems

Sobieski, 1980

19

Diagnosis of the Problem

In a typical twin product of a research‘ work, formal report
plus computer program, report will receive all the attention of
the organization, program will receive none

The research organization is geared to ,s’VUpport quality report
production (editorial committees, illustrators, reproduction ,

etc.) but not quality program production

Impression is created that in the report-program pair, the
program’s status is secondary. Consequence: no incentive
to strive for program quality ~

Vast difference in the type of skills and degree of effort
between a prototype, proof-of-the-concept program, and a
professionally coded and tested and dOCumented]program
A researcher is a natural creator o' the former but is ill-
equipped to develop the latter - |

Sobieski, 1980

Reflections from a “Jurassic Programmer” on Software Development at LaRC

~In 1972 the software development environment at NASA was very different. It was

a batch environment where the programmer’s life revolved around the deliveries
of the “green tub” and the survival of data and programs on assorted paper media.
Some advanced programmers took advantage of 7-track tapes and data cells for
storage. N

® The Revolution of 1975

Two major developments occured at the Center in 1975 that changed the scope and
way of doing software development forever. -

The advent of micro-processors ended the monopoly held by discrete hardware
components or “random logic” in the implementation of contro] functions. This
also exposed engineers to “programmers” who were unfamiliar with hardware
and its associated engineering discipline. Critical real-time applications were
now in the hands of software developers and opened up the embedded domain.
Good programmers saw the value in adopting practices very analogous to those of
the hardware designers. As the electronics revolution continued, hardware
engineers were forced to become somewhat familiar with software.

The introduction of the interactive development environment was brought about
by the installation of a new operating system on the NOS mainframes and the
populating of selected offices with dumb terminals. Key-to-disk storage did away
with all of those card files. The terminal opened access to any programmer,
regardless of background. Requirements to pass proficiency tests on the use of the
system and FORTRAN in order to get a user number were deleted.

* Q&A: Was batch all bad?
Was interactive all good?

The answers to the two questions are No and No. In retrdspect, I believe the batch
environment had several good attributes, and the interactive environment has
been a major factor in the lack of discipline we see today.

Pre-revolutionary programmers realized the value of desk checking and
flowcharting because it could take weeks to get a successful compilation if they
weren’t careful. Plotting in a batch mode was often an extremely frustrating task!
Programmers were freed from the tedium of keypunching because folks at ACD
punched and verified from green and white coding sheets. This gave me an
opportunity to insert lots of good documentation and scan the code one more time
before committing to the initial submittal. The slower pace of life gave
programmers more time to sit and stare at their code. In fact, managers expected
them to behave this way.

62

In the interactive world, the lure of instant gratification at the terminal led to a
rush to the CRT. People routinely sat down and began typing wildly without even
a coding sheet. The most unfortunate result was that people could more easily
confuse activity with productivity. Often, the lowest level task - pounding the keys -
was the key measure of productivity.

* The Revolution of 1994 - better, cheaper, faster?

Here at Langley, times have changed. In fact, times are tough. Software is now a
real product, not just a by-product generated along the way to some higher goal
like a report. Software is a technology that needs to be transferred outside the gate
- and it needs to be good because of its added visibility. Quality issues are brought
up everywhere. The dilemma is how to get quality while operating under a
constrained budget.

* No more heroes - we have to work smarter

There is no more of the “green medicine” to throw at our software problems.
There are no additional people to hire. We must realize that faster CPUs and
graphics workstations and glitzy tools simply speed up the most visible portion of
the development process. Automating a poor process will get us nowhere.

We need to create a recipe for successful software development for the various
domains at LaRC. That is, learn from the mistakes that are often the best
teachers, share the tips and tricks, and reward the people who do the right things
throughout the entire lifecycle that result in quality software. We need to catch
our collective breath and treat software like an engineering discipline in order to
design, manage, document, maintain, and transfer knowledge.

In short, there is no license to meander anymore. The choice is ours: will we

remember the past or are we, as Santayana says, “doomed to repeat it”?

Pamela L. Rinsland

63

v9

LaRC Software Domains

Flight software

Software that performs command, control, onboard data processing, data storage and
communication for space (e.g. LITE, HALOE) or aircraft (e.g. LASE, CLASS, Windshear)
instruments.

Facility software

Software that performs the command, control, data acquusmon for key LaRC facilities such
as tunnels, flight simulators, hangar data systems, expenmental aircraft infrastructure (737,
757), and other test facilities.

Ground Support Equipment
Software used to perform test and integration, check out flight instruments, and monitor
system performance during mission operatlons

Management Information Systems
Personnel and financial resource management software used to support LaRC resource
management. ‘ : ,4

Research Software » . b

Engineering analysis tools, simulations and mcdels dave oped to s&xgpm the research ‘
mission of the Center such as CFD codes. data presentation and vssuahzatlon models &
algorithms, and post-mission data analyses.

Software Engineering & Ada Lab (SEAL) Tools

1) CADRE Teamwork CASE Tools:

a) Teamwork/SA (Structured Analysis)

b) Teamwork/RT (Real-Time Analysis)

c¢) Teamwork/IM (information Modeling)

d) Teamwork/SD (Structure Design)

e) Teamwork/OOD (Object-Oriented Design)

f) Teamwork/Ada (Editor, Code Generator, Design Sensitive Editor)

g) Teamwork/SIM (Simulation Tool)

h) Teamwork/FORTRAN REV (rev. eng.)

i) Ensemble "C" Tools
- System Understanding (High-level rev. eng.)
- Function Understanding (Low-level rev. eng.)
- Documentation

2) Paradigm Plus (Object-Oriented Meta-CASE Tool) (4)

3) McCabe Tools:
a) Analysis of Complexity Tool (ACT)
b) Battlemap Analysis Tool (BAT)
c) Ada language parser

4) Ada Measurement and Analysis Tool/Diana (AdaMAT/D)

5) VAX Software Engineering Tools (VAXset)

6) NASA Intelligent Documentation Management System (IDMS)
7) InQuisiX - Reuse Repository

8) In-Circuit Emulators
a) Microtek MICE-V 386 Emulator
b) Microtek MICE-V 486 Emulator
c) HyperSource-386/486 Source/Assembly-Level Debugger
d) AMC ES-1800 80186 Emulator (2)
e) Emulation Support Driver (ESD) Software

9) CADRE Software Analysis Workstation (SAW) (2)
a) Interactive State Analyzer
b) SoftAnalyst
c) Probes for 80186/286/386, 1750A, Generic

10) Logic Analyzers/Oscilloscopes:
a) HP 16500A Logic Analyzer
b) HP 16530A Digitizing Oscilloscope Module
c) HP Probes/Preprocessor Interfaces for: 1553B, TMS320C30/31,
80486, HPIB-RS232-RS449, SCSI Bus, user definable
d) HP Performance Analyzer
e) HP Inverse Assemblers
f) Fluke Scopemeters (2)

65

11) TITAN SESCO Flight Equivalent Computer
a) SECS 386/30 Single Board Computer
b) SECS 186/30 Single Board Computer
c) SECS 80/1553B Single Board Computer
d) Memory board (386 - 4M, 186 - 512K)
e) Parallel and Analog 1/0 Modules

12) PROM Tools
a) TITAN/Data 10 Flight Board Programmer
b) EPROM Erasers (3)
c) PROM ICE

13) PC Data Acquisition Hardware and Software
a) GPIB Boards and Software
b) AT-DIO-32F (10) AND DI0-96 Boards and software
c) SF-1 (2) Shuttle SFMDM Cards
d) LabVIEW For Windows Dev. System (2)
e) LabWindows
f) NI-DAQ DOS/Windows

14) Systems
a) VAXstation 4000 model 60
b) SUN SPARCstation 10
c) SUNserver 690MP
d) Noveli 486 Server/UPS
e) Castelle FAXpress
f) SMTP Gateway PC
g) Various 386/486 PCs
h) Laser Printers (3)

15) Miscellaneous
a) Soldering/Desoldering station
b) Wire-wrap tools
c) Insertion/Deinsertion tools
d) Proto-Boards/Breadboards
e) Military & D-shell connectors and cabling tools
f) HP Power Supplies (4)
g) Optical Drives

For more information, contact Jerry Garcia at (804)-864-5888.

66

3.1
3.2
3.3
34

SESSION 3 Software Engineering Standards, Methods, and CASE Tools
Chaired by

Susan Voigt

Model-based Software Process Improvement - Brenda Zettervall

A Study of Software Standards Used in the Avionics Industry - Kelly Hayhurst
A Software Tool for Dataflow Graph Scheduling - Robert Jones

Use of Software Through Pictures on CERES - Troy Anselmo

67

